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Abstract. We calculate explicitly the space dependence of the radiative relaxation rates and associated
level shifts for a dipole placed in the vicinity of the center of a spherical cavity with a large numerical
aperture and a relatively low finesse. In particular, we give simple and useful analytic formulas for these
quantities, that can be used with arbitrary mirrors transmissions. The vacuum field in the vicinity of the
center of the cavity is actually equivalent to the one obtained in a microcavity, and this scheme allows one
to predict significant cavity QED effects.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules, and ions – 32.80.Pj Optical cooling of
atoms; trapping – 42.50.Pq Cavity quantum electrodynamics; micromasers – 42.50.Lc Quantum fluctua-
tions, quantum noise, and quantum jumps

1 Introduction

Many theoretical and experimental work has been devoted
during recent years to the so-called “cavity QED” regime,
where strong coupling is achieved between a few atoms
and a field mode contained inside a microwave or optical
cavity. In particular, it has been demonstrated that the
spontaneous emission rate of an atom inside the cavity is
different from its value in free space [1–12]. This effect can
be discussed from several different approaches, and here
it will be basically attributed to a change of the spectral
density of the modes of the vacuum electromagnetic field,
which is due to the cavity resonating structure. This ap-
proach is particularly convenient when the cavity does not
have one single high-finesse mode, but rather many nearly
degenerate modes, as it is the case in confocal or spherical
cavities. More precisely, we will show that a “wide aper-
ture” concentric resonator using spherical mirrors with a
large numerical aperture, can in principle change signifi-
cantly the spontaneous emission rate even with moderate
finesse. Similar result were already demonstrated, using
either a spherical cavity [7,11] or “hour-glass” modes in a
confocal cavity [12]. In such experiments, the dipole has
to sit within the active region volume, which is usually
of very small size (of order (10λ)3 to (100λ)3). In refer-
ences [11,12], a possible solution was implemented by re-
ducing the cavity finesse in order to have an extended area
in which a spherical wave is “self-imaged” on itself. How-
ever, getting large effects will put more severe constraints
both on the quality of the cavity and on the localisation
of the dipoles.
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A good understanding of these effects requires first
to know the full space dependence of the cavity-induced
damping and level shifts. In this paper, we will look at the
situation where an atomic dipole lies close to the center
of a spherical cavity with a large numerical aperture. We
will show that large changes both in the atom damping
rate and in its energy levels can be expected, even with a
moderate cavity finesse, provided that the atom sits (rela-
tively, but not extremely) close to the cavity center. In the
following, we will assume that the cavity damping rate κ is
much larger than the free-space atom damping rate γvac.
In that case, the cavity still acts as a continuum with re-
spect to the atomic relaxation, and the damping rate and
level shift of an atom at point r are given by [13]:

Γ (r) =
2π

�2

∑

k

(d · ek(r))2δ(ωk − ωo) (1)

∆(r) =
∑

k

(d · ek(r))2

�2
P
(

1
ωk − ωo

)
(2)

where the summation are taken over a complete set of
modes denoted by the index k. The resonance frequency
and field at point r for mode k are respectively denoted ωk

and ek(r), while the atom resonance frequency and dipole
are respectively ωo and dD, where D is a dimensionless
combination of raising and lowering atomic operators. We
note that the free-space value of ∆(r) is a diverging quan-
tity, which is usually assumed to be absorbed in the defini-
tion of the atomic levels; therefore, one considers here only
the (finite) change of ∆(r) with respect to this free-space
value, that will be denoted ∆′(r):

∆′(r) = ∆cav(r) − ∆vac(r). (3)
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The purpose of this paper is to present an explicit calcu-
lation of ∆′(r) and Γ (r)/2, or equivalently of the modifi-
cation of the (3-D) vacuum modes spectral density due to
the presence of the cavity. For definitiveness, we will con-
sider the case of an “open” spherical cavity, of radius R
and of reflectivity and transmittivity coefficients r and t,
with r2 + t2 = 1. The cavity can be “open” in the sense
that it is made of two separate concentric mirrors which do
not cover all 4π steradians. We will assume that kR � 1
(typically kR = 105 with k = ω/c), and a moderate cav-
ity finesse (in the range 10–100). These parameters seems
accessible from an experimental point of view, and we will
show in the next sections that they allow one to get quite
significant cavity-induced effects.

2 Modes of a large aperture concentric cavity

We shall first consider the formal case of a scalar field,
before turning to the real transverse electromagnetic field.
Following the ideas of scattering theory, we propose a com-
putation scheme where the propagation equations are cast
in a form that is suitable for the determination of the
mode structure and that allows a convenient ray-optics
formulation.

2.1 Propagation of a scalar field

We look for stationary solutions φ(r, t) = φ(r)e−iωt of

∆φ − 1
c2

∂2
ttφ = 0 (4)

that is, in spherical coordinates (r, θ, φ)

1
r
∂2

rr(rφ) + k2φ +
1
r2

∆sφ = 0 (5)

where we note k = ω/c and introduce the spherical
Laplacian

∆s =
1

sin2 θ
∂2

φφ + ∂2
θθ +

cos θ

sin θ
∂θ (6)

with eigenvalues −l(l + 1), l ≥ 0.
In the far-field regime: r → ∞, we can write

unambiguously

φ(r = rΩ̂) =
eikr

r
fout

r (Ω̂) +
e−ikr

r
f in

r (Ω̂). (7)

In the following we will often omit the argument Ω̂
of fout,in. The quantity fout,in

r depend slowly on r:
∂rf

out,in
r ∼ fout,in

r /r and tend to large r angular
distributions:

fout,in
r −→

r→∞
fout,in
∞ . (8)

Such an ‘out’ field occurs for instance in the case of a ra-
diating localized source: its squared amplitude then cor-
responds to the power radiated along Ω̂ per unit solid

angle. Here we also allow for incoming radiation, focused
on a localized region — which, if not absorbed, turns after
focusing into outgoing radiation. Note that this separation
in ‘in’ and ‘out’ field is not possible too close to the origin,
when the Poynting vector is no more almost radial.

2.1.1 Far-field solution

We have separate propagation equations for fout,in
r : the

‘in’ field obeying

∂rfr +
i

2k
∂2

rrfr +
i

2kr2
∆sfr = 0. (9)

Defining δf = fr − f∞ we obtain

∂rδf

with orders δf
r

= −i
2kr2 ∆sf∞

f∞
kr2

− i
2kr2 ∆s δf

δf
kr2

− i
2k∂2

rrδf
δf
kr2

(10)
(we are only interested in the large r asymptotics, so we
first ignore ∆s to get the orders of the different terms).

The first term in the r.h.s. gives the leading behaviour

δf � i

2kr
∆sf∞ (11)

and a systematic expansion can be obtained by solving
iteratively (10) producing terms

∆n
s

(kr)n+p
f∞,

{
n ≥ 1
p ≥ 0 . (12)

In the sequel, we shall be interested in the field at ∼100λ−
off the origin: in geometric optics this involves light-rays
with an impact parameter smaller than 100λ−, or photons
with orbital angular momentum smaller than 100�. There-
fore, in the multipole expansion of the field, we only keep
harmonics with l ≤ 100: ∆s is now at most of the order
104. Using our typical value kR � 105, the terms (12) with
p ≥ 1 are then negligible, and all p = 0 terms are obtained
by neglecting the last term in (10), which is equivalent to
replacing (9) with

∂rfr =
−i

2kr2
∆sfr (13)

Its solution
fr = ei∆s/2kr f∞ (14)

then gives all the p = 0 terms of the expansion (12). It is
easy to show that with ∆s ∼ 104, kr ∼ 105 the magnitude
of this first term is a few percent, while the next two terms
range as 10−7. Therefore, we shall use only the first term
f in

r = e
i∆s
2kr f in

∞ in the following.
To conclude this section, we extend these results to the

case of outgoing waves: so far we only considered incom-
ing radiation, but the analogue of (9) is simply given by
changing i to −i, and all results are easily transposed un-
der complex conjugation, as an example of time reversal.
In particular, we shall use

fout
r = e−

i∆s
2kr fout

∞ . (15)
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2.1.2 Solution at any distance

Up to now, we only studied asymptotic expansions of so-
lutions of the wave equation in spherical coordinates, ex-
pressing fr(Ω̂) for large r in terms of the values taken
by f∞ in the neighbourhood of Ω̂. We will now derive an
integral equation giving fr at any finite distance in terms
of the function f∞.

In the case of a stationary wave propagating in free
space (with sources at infinity), we expect the knowledge
of f in∞ to enable us to determine the solution φ(r) every-
where, and in particular its asymptotic behaviour fout∞ :
forming wave-packets, this amounts to constructing the
solution at any time, given its value in the infinite past.
We claim that the exact solution is obtained by a sum of
plane waves

φ(r) = −2ik

∫
dΩ̂
4π

f in
∞(Ω̂)ei(−kΩ̂)r (16)

f in
∞(Ω̂) being the amplitude of the wave coming from di-

rection Ω̂ with wave-vector −kΩ̂.
Obviously, the proposed solution does satisfy the wave

equation, as a superposition of plane-waves; to prove our
statement it thus suffices to verify that (16) has the right
asymptotic behaviour f in

∞. But for large r the integral is
dominated by its points of stationary phase; suppose, for
definiteness, that the axis θ = 0 is in the direction of r:
then the phase in (16) −ikr cos θ is stationary at θ = 0 and
θ = π. Near each of these points, the leading contribution
to the integral will be of order 1/kr, with corrections cor-
responding to higher powers of 1/kr: so, the asymptotic
part φin,out is entirely determined by the leading contri-
bution to the integral. Using

∫

near θ=0

dΩ̂ e−iA cos θ �
A→∞

2iπ

A
e−iA (17)

we obtain the contributions of neighbourhoods of θ = 0
and θ = π to φ(r)

e−ikr

r
f in
∞(θ = 0); −eikr

r
f in
∞(θ = π) (18)

corresponding respectively to the ‘in’ and ‘out’ fields, as
could easily have been figured out.

We recognize the right ‘in’-field in this expansion, and
have proved the validity of (16). Moreover, we have ob-
tained the following relation between ‘in’ and ‘out’ fields

fout
∞ (Ω̂) = −f in

∞(−Ω̂). (19)

If a wave is focused, it emerges in the opposite direction,
with the opposite phase. We also recognize in the i factor
in the integral:

φ(r) =
−i

λ

∫
dΩ̂f in

∞(Ω̂)ei(−kΩ̂)r (20)

the relative π/2 phase at the focus point.

Corrections to this leading behaviour will produce the
asymptotic expansion of f in,out

r in powers of 1/kr, the
neighbourhood of θ = 0 contributing to f in

r and that of
θ = π to fout

r . In this way, one can recover, with longer
calculations, the results of the preceding section. For in-
stance, including the first correction to f in

r amounts to
replacing f in

∞(θ = 0) with f in
∞(0) + i/2kr

(
∆sf

in
∞
)
(0).

2.1.3 A complete set of explicit solutions

We know that the angular distribution of the field has
variations with r given by an operator expressed with ∆s:
thus, eigenfunctions of ∆s — spherical harmonics — give
r-independent angular distributions (up to normalization
and phase), that is, factorized solutions:

Ylm(Ω̂)j(r). (21)

The wave equation and the smoothness of the solution at
r = 0 then determine j(r) up to a constant factor:

j(r) =
Jl+1/2(kr)

√
kr

. (22)

Using the asymptotics of Bessel functions

Jl+1/2(kr)
√

kr
=

r→∞

√
2
π

1
kr

sin
(

kr − πl

2
+

l(l + 1)
2kr

)

+ O
(
1/r3

)
(23)

we obtain the large r behaviour of this explicit solution

φ(r = rΩ̂) = −2ik(−i)l

√
π

2
Ylm(Ω̂)

Jl+1/2(kr)
√

kr

=
[
Ylm(Ω̂)

e−ikr

r
e−i l(l+1)

2kr

− (−1)lYlm(Ω̂)
e−ikr

r
ei

l(l+1)
2kr + O

(
1/r2

) ]
. (24)

We can verify in this particular case the general relation
fout
∞ (Ω̂) = −f in

∞(−Ω̂) and check the action of exp i∆s/2kr
on f in

∞ to the accuracy of (24).
We can also check the expression for the field at fi-

nite distance (16): noting that f in
∞ = Ylm and choosing

normalized spherical harmonics

〈Ylm | Ylm〉 =
∫

dΩ̂
4π

|Ylm|2 = 1 (25)

we decompose

f in
∞ =

∑

lm

〈
Ylm | f in

∞
〉
Ylm (26)

and obtain

φ(rΩ̂) =
∑

lm

〈
Ylm | f in

∞
〉 −2ik

il

√
π

2
Ylm(Ω̂)

Jl+1/2(kr)
√

kr
. (27)
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The rotationally invariant quantity
∑

m Ylm(Ω̂)Ylm(Ω̂′) is
conveniently evaluated when the axis of reference is cho-
sen along Ω̂ and has value (2l + 1)Pl(cos α), Pl being
the lth Legendre polynomial, and α the angle between Ω̂
and Ω̂′. Using the formula

∑

l≥0

il
Jl+1/2(kr)

√
kr

(2l + 1)Pl(cosα) =

√
2
π

eikr cos α (28)

we finally obtain

φ(r) =
〈
2ikeikΩ̂′r | f in

∞(Ω̂′)
〉

Ω̂′
(29)

which reproduces (16).

2.2 Modes of concentric cavities

2.2.1 Perfect spherical resonator

The explicit solutions given above allow us to determine
the field modes inside a perfectly reflecting sphere, with
radius R � λ−: when we classify modes according to their
spherical symmetry (quantum numbers l, m), the require-
ment that the field shall vanish on the inner face of the
cavity

fR = f in
R e−ikR + fout

R eikR = 0 (30)

reads Jl+1/2
(kR) = 0, or according to (23):

kR − π

2
l +

l(l + 1)
2kR

= 0 [mod π] (31)

for the mode l, m, where we have written all significant
terms for l ∼ 100; kR ∼ 105, obtaining by the way the
lowest order for which the l-degeneracy is disproved. The
eigenfrequencies are then

νl,n =
kc

2π
=

c

2R

(
n +

l

2
− l(l + 1)

2πkR

)
(32)

n being the number of radial nodes.
With our numerical values the l-frequency shift has

relative magnitude which is up to l/2πkR ∼ 2×10−4, and
is therefore very small compared to the cavity linewidth.
We note that at a point close to the center, small l modes
are more important, since photons travelling close to the
origin carry a small orbital momentum. This point will be
made quantitative later, when we will discuss the case of
a spherical cavity with finite transmission.

2.2.2 Modes in an open cavity

Principle of the determination of the mode structure

We recognize the vacuum fluctuations in a concentric cav-
ity as induced by the vacuum fluctuations of the outer
void space which enter into the cavity: we will thus start

our analysis by studying how any incident radiation can
enter in the open concentric resonator.

We consider two spherical mirrors, facing each other in
vacuum, with common center O — as if in the preceding
example the tropical zone of the sphere were transparent,
while the polar zones remained coated. For our computa-
tion, we shall replace the infinite vacuum with the inner
volume of a very large sphere centered at O, thus replac-
ing a true continuum with a discrete series of very closely
spaced lines. We will use R to denote the radius of the
outer closed sphere, and R for the inner sphere, partially
covered by mirrors; and use the following notation for the
field of an eigenmode

R > r > R:
1
r
eikrfout

r +
1
r
e−ikrf in

r

R > r: φ(r). (33)

Note that the decomposition between ‘in’ and ‘out’ fields
in the first equation is allowed by our choice to study
only modes which contribute to φ near O, that is, not too
unfocused.

We can formally extend φ for larger values of r as
if there were no cavity at all, and write the far-field
decomposition

1
r
eikrgout

r +
1
r
e−ikrgin

r (34)

gin
∞ is the incoming radiation which induces in void space

the same field near O as f in
∞ does in the presence of mir-

rors. We are ensured that gout
∞ (Ω̂) = −gin

∞(−Ω̂) since that
field propagates through the origin. However, the same
equality does not hold for f : to understand the relation
between f in and fout, we note that the incoming radia-
tion f in induces a field in the open cavity, which in turn
(perhaps after resonance) emits an outgoing field fout;
writing the precise relation would require to solve the
propagation equation for r > R, write the boundary con-
ditions on the mirrors, and obtain the condition on f in,out

for the existence of a solution φ between the mirrors satis-
fying gout∞ (Ω̂) = −gin∞(−Ω̂). In some sense, g directly goes
through the origin, while f in turns into fout after reflec-
tion on the mirrors, or multiple reflections in the cavity.
We will not try to write any explicit formula for that, but
use some general properties of the relation

f in
∞ �→ fout

∞ = Ŝf in
∞ (35)

in close analogy to scattering theory.
We will assume that the losses on the mirrors are neg-

ligible when compared to the transmittivity: the balance
between the incoming and outgoing energy fluxes

∥∥fout
∞
∥∥2 =

∥∥f in
∞
∥∥2

=
∫

dΩ̂
4π

∣∣f in
∞
∣∣2 (36)

requires Ŝ to be unitary.
We now express the condition of perfect reflection on

the inner face of the large closed cavity, i.e. that the field
vanishes for r = R:

eikRfout
R + e−ikRf in

R = 0. (37)
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Once again, we are interested only in those modes that are
focused enough so that they may contribute to the field
near O: l being bounded, if R is large enough we may use
fR � f∞ and rewrite the preceding formula

Ŝf in
∞ = −e−2ikRf in

∞ (38)

and formulate the problem of determining the modes of
the open cavity (enclosed in a large one) as follows: find
a wavenumber k such that −e−2ikR is an eigenvalue of
the unitary operator Ŝk and identify the corresponding
eigenvector. We precised our notation and used Ŝk to make
clear the dependency of the scattering operator on the
frequency at which the open cavity is excited. However,
the problem is not so intricated since Ŝk depends slowly
on k on the scale of the free spectral range of the R-cavity:

δk RF � 1 ⇒ Ŝk � Ŝk+δk (39)

with F the finesse of the R-cavity. So, in order to find
the eigenmodes with wavenumbers k � k0 we have to find
the eigenvalues and eigenvectors of Ŝk0 ; then adjust k so
that −e−2ikR coincides with any chosen eigenvalue of Ŝk0 .
Clearly, the mode structure so obtained will be (locally)
periodic: the same eigenvector of Ŝk0 occuring as the far-
field of a mode every δk = π/R or δν = c/2R.

We would like to stress the close analogy between this
general scheme and scattering theory. The operator Ŝ is to
be thought of as an S-matrix in interaction representation:
indeed, we can actually take the limit of large r for the
connection between f in

r and fout
r , but not for the relation

between e−ikrf in
r and eikrfout

r . Following our analogy, we
may say that the radial propagation with phase factor eikr

corresponds to free evolution in perturbation theory, while
the orthoradial propagation of light with changes in the
angular distribution f corresponds to the perturbation
and asymptotically vanishes (at large r vs. at large times
in scattering theory).

Normalization of the modes

We define the total energy of the field to be
∫

d3r |φ(r)|2 =

2
∫

d3r φ̂2
real

time
where φreal(r, t) = Re[φ(r)e−iωt]. For

large enough R this energy integral is dominated by large r
regions where we can approximate

φ(r) � 1
r
eikrfout

∞ +
1
r
e−ikrf in

∞ (40)

and so obtain for the energy

E = 4πR
(∥∥f in

∞
∥∥2

+
∥∥fout

∞
∥∥2
)

= 8πR
∥∥f in

∞
∥∥2

. (41)

We decide to call vacuum the state in which every mode is
excited with energy 1 (in real electrodynamics we should
use �ω/2) so that the normalization of any mode in vac-
uum is ∥∥f in

∞
∥∥2

vac
=

1
8πR . (42)

We can easily express the fluctuations of the ordinary vac-
uum field (here, ordinary means in infinite space) or rather
their spectral density: in a range of frequencies δν we have

V

(2π)3

∫

δν

d3k =
4πV

c3
ν2 δν (43)

modes for the case of a large volume V with periodic
boundary conditions, while each mode contributes 1/V

to |φ(r)|2 since the energy of any mode is uniformly dis-
tributed in the volume. Finally,one has the expected result
in ordinary vacuum:

〈
|φ(r)|2

〉

δν

=
4π

c3
ν2 δν. (44)

In the next part, we will derive an analogous formula for
the case of an open concentric cavity and compute by how
much the vacuum fluctuations (near the center) are ampli-
fied or reduced by the presence of mirrors at about 1 cm.
Before that, a last comment is in order: to obtain the above
expression for the ordinary vacuum field we used the fact
that the contributions of different modes add up incoher-
ently. This is always true when we use a basis of modes
in which the energy operator (Hamiltonian of the field) is
diagonal: in general, eigenmodes are non-degenerate in fre-
quency and this condition is automatically satisfied. This
vanishing of the off-diagonal matrix elements of the energy
reads ∫

d3rφ∗
1(r)φ2(r) = 0 (45)

and expresses the orthogonality of different modes with
respect to volume integral.

The discussion of the preceding part enables us to as-
sert a more precise property, which will be essential in
the following: even the angular overlap of different modes
is 0. Indeed, we argued that eigenmodes were obtained
by diagonalizing the unitary operator Ŝk0 : but evidently,
two different eigenfunctions of the same unitary opera-
tor are orthogonal. Thus, the far-fields of different modes
have a vanishing angular overlap, unless the two particu-
lar modes do have the same far-field asymptotics: in the
latter case, their number of radial nodes being different
ensures the vanishing of their volume overlap.

That property can be stated differently: if we consider
all eigenmodes in a range of frequencies δν = c/2R and
associate to every such mode its f in∞ we obtain a complete
orthogonal set of normalized angular functions. Should we
consider a larger range δν every member of this orthogonal
family would then be counted 2R δν /c times.

Modification of the vacuum field in an open cavity

We will find an expression for the field at points close to
the origin (r < a few hundreds λ− that is a few dozens µm).
All light rays that pass so close to the center will then
reflect almost normally on the mirrors: we will assume
that the wave-fronts of all modes are sufficiently tangent
to the mirrors for us to use the i = 0 reflectivity and
transmittivity coefficients ρ, τ (ρ = 1 for a perfect mirror).



186 The European Physical Journal D

Let us first compute the field induced in the open cav-
ity by incident radiation f in

∞: we will note f in
r = Urf

in
∞

with Ur � ei∆s/2kr according to our previous results. A
similar relation holds for ‘out’ fields with Ūr = U+

r or U−1
r

since Ur is (almost) unitary. On the outer face of the mir-
ror, the field has incoming and outgoing amplitudes

e−ikR

R
URf in

∞,
eikR

R
ŪRfout

∞ (46)

while on the inner face we find

e−ikR

R
URgin

∞,
eikR

R
ŪRgout

∞ (47)

with

gout
∞ (Ω̂) = −gin

∞(−Ω̂): gout
∞ = −P̂ gin

∞ (48)

P̂ being the parity operator, that commutes with ∆s

and UR. The gin wave has two contributions: partial trans-
mission of f in and partial reflection of gout:

e−ikRUR gin
∞(Ω̂) = −ρ(Ω̂)eikRŪR gout

∞ (Ω̂)

+ τ(Ω̂)e−ikRUR f in
∞(Ω̂) (49)

where we explicitly write the angular dependency of ρ, τ :
in particular, out of the mirrors ρ = 0 and τ = 1. We can
easily solve (48, 49) to obtain

gin
∞(Ω̂) = UR

1
U2

R − e2ikRρ(Ω̂)P
τ(Ω̂)UR f in

∞(Ω̂) (50)

which yields a formula for the field at any point through

φ(r) =
〈
2ikeikΩ̂r | gin

∞(Ω̂)
〉

Ω̂
. (51)

Introducing the shorter notation

T = τ(Ω̂)
1

U2
R − e2ikRPρ(Ω̂)

UR (52)

we obtain for the vacuum field

〈
|φ(r)|2

〉

vac
=

∑

modes: f in∞

〈
2ikeikΩ̂r

∣∣T̄ + UR

∣∣ f in
∞
〉

×
〈
f in
∞
∣∣U+

R T̄
∣∣ 2ikeikΩ̂r

〉
. (53)

The above-mentioned property of orthogonality of the
modes now gives a considerable simplification since we do
not need to know the precise expression of all the modes,
but only their total contribution to the physically mean-
ingful quantity 〈|φ(r)|2〉vac in a given frequency range: so,
no matter what the true f in

∞ may look like, they surely
give a closure relation. Recalling that the f in

∞ associated

to the modes in a frequency range of c/2R form a com-
plete orthogonal set normalized according to (42) we see
that ∑

modes in δν: f in∞

∣∣f in
∞
〉〈

f in
∞
∣∣ =

2R δν

c

1
8πR 1 (54)

and is actually independent of the large cavity we used to
mimic the infinite vacuum. We then have

〈
|φ(r)|2

〉

vac
=

k2 δν

πc

∥∥∥U+
R T̄ eikΩ̂r

∥∥∥
2

. (55)

Using the unitarity of UR and the expression of ordinary
vacuum fluctuations we find
〈
|φ(r)|2

〉

cav〈
|φ(r)|2

〉

vac

=
∥∥∥T e−ikΩ̂r

∥∥∥
2

=
∥∥∥∥τ

1
ei∆s/kR − e2ikRPρ

ei∆s/2kR e−ikΩ̂r

∥∥∥∥
2

. (56)

2.2.3 Numerical study and ray optics interpretation

Numerical results

As expressed in (56), we shall evaluate the action of an
operator on the function Ω̂ �→ e−ikΩ̂r and then com-
pute the squared norm of the resulting function: this can
be done numerically, decomposing functions on spherical
harmonics

e−ikΩ̂r =
∑

l,m; 0≤|m|≤l

(−i)l

√
π

2

Jl+1/2
(kr)

√
kr

× Yl,m (r/r) Yl,m(Ω̂) (57)

and computing matrix elements of the k-dependent oper-
ator in the basis of spherical harmonics.

We only considered axially-symmetric cavities: in that
case, the operators involved conserve m and the result is
expressed as a sum of contributions from the different m
sectors. Moreover, m = 0 gives the single contribution to
the field on the axis. In the latter case, we could use trun-
cated systems of up to lmax = 300 spherical harmonics
and study the effect of truncation: the result was constant
within 1% for lmax ≥ 100. In the general case (field fluc-
tuations at points away from the symmetry axis of the
cavity), we used lmax = 100 with any m to study the spa-
tial and spectral dependency of vacuum fluctuations.

The graphs shown in Figure 1 were obtained with con-
centric mirrors of uniform reflectivity ρ = 0.98 (giving
an intensity transmittivity T � 4%) covering 30% of the
4π steradian; this is obtained for an half-aperture angle
θm = 45o for each mirror. The frequency is set at the
resonance value at the cavity center. We note the rapid
oscillations of the amplitude of vacuum fluctuations near
the center of the cavity; right at the center, the obtained
value at resonance agrees approximately with the usual
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Fig. 1. Spatial variation of vacuum fluctuations on the cavity axis, obtained from a full numerical calculation. The horizontal
axis unit is 1/k, and the vertical axis unit is the standard vacuum level. The amplitude reflection coefficient of the mirrors is
taken to be ρ = 0.98, and the numerical aperture of the cavity is 0.7. The right hand side of the figure is a zoom close to the
cavity center.

rough estimate 4/T × ∆Ωmirr/4π. However, at a few µm
away from the center the enhancement effect is halved,
and then decreases further on a scale of ∼15λ. The next
sections will give support to a qualitative and quantitative
formulation of these facts in terms of ray-optics.

Case of a closed cavity: ray optics interpretation

We come back to the case of a closed spherical resonator,
now allowing a non-zero transmittivity of the mirrors (but
still negligible losses, as we always suppose in this article).
We can apply to that particular case the formalism we
developed for open cavity, and recover the known modes
involving spherical harmonics:

1
ei∆s/kR − e2ikRPρ

ei∆s/2kR Yl,m =

1
e−il(l+1)/kR − (−1)lρe2ikR

e−il(l+1)/2kRYl,m (58)

so that the vacuum fluctuations (normalized to 1 for usual
vacuum) read

∑

l≥0

T
∣∣e−il(l+1)/kR − (−1)lρe2ikR

∣∣2
π

2
(2l + 1)

Jl+1/2
(kr)2

kr

(59)
where we recognize the usual resonance factor, including
the slight non-degeneracy of modes (increasing l: lower res-
onant frequency) and see the explicit spatial-dependency
of l-modes.

Averaging vacuum fluctuations in a frequency range
much larger than the ‘free’ spectral interval of the cav-
ity we can replace the frequency-dependent factor by its
average value: 1, and use the following sum rule

∑

l≥0

π

2
(2l + 1)

Jl+1/2
(kr)2

kr
= 1. (60)

We actually recover usual vacuum if the cavity is large
enough (with free spectral range smaller than the experi-
mentally used frequency bandwidth).

If we are interested in the behaviour of vacuum fluctu-
ations in the vicinity of the center (a few microns) where
only small l modes contribute, we may assume that all
modes are degenerate and use a common resonant factor:

T

|1 − (−1)lρe2ikR|2
. (61)

The sum rules for Bessel functions

∑

l:odd/even

π

2
(2l + 1)

Jl+1/2
(kr)2

kr
=

1
2
± sin 2kr

4kr
(62)

then allow us to write the vacuum field as

T

|1 − ρe2ikR|2
(

1
2

+
sin 2kr

4kr

)

+
T

|1 + ρe2ikR|2
(

1
2
− sin 2kr

4kr

)
. (63)

At any point, we have two series of resonant lines, in
which the vacuum noise is distributed with weights 1/2 ±
sin 2kr/4kr. At a frequency which is resonant for the cen-
ter of the cavity, the spatial dependency of the vacuum
field shows a reduction by a factor 2 when one moves away
from the center, as was noted above in the case of an open
cavity; we interpret this as the distribution of vacuum fluc-
tuations on the two series of lines: right at the center only
the l = 0 mode appear, but the odd l modes have no other
common nodes and share �50% of the vacuum noise away
from the center. The same conclusions can be formulated
in terms of light-rays: noting that

1
2

+
sin 2kr

4kr
=
∫

dΩ̂
4π

cos2(kΩ̂ · r),

1
2
− sin 2kr

4kr
=
∫

dΩ̂
4π

sin2(kΩ̂ · r) (64)
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Fig. 2. Spatial variation of vacuum fluctuations on the cavity axis, obtained from a simple ray-optics calculation. The horizontal
axis unit is 1/k, and the vertical axis unit is the standard vacuum level. The amplitude reflection coefficient of the mirrors is
taken to be ρ = 0.98, and the numerical aperture of the cavity is 0.7. The right hand side of the figure is a zoom close to the
cavity center, which shows also a comparison with the full calculation (Fig. 1).

we may express the vacuum fluctuations (still neglecting
the l-dependency of resonant frequencies) as

〈
|φ(r)|2

〉

cav〈
|φ(r)|2

〉

vac

=
∫

dΩ̂
4π

(
T

|1 − ρe2ikR|2
cos2(kΩ̂ · r)

+
T

|1 + ρe2ikR|2
sin2(kΩ̂ · r)

)
(65)

and propose the following interpretation: through the cen-
ter of the cavity we may draw a ray in any direction; that
ray reflects on the inner face of the cavity back onto itself
and gives rise to a system of stationary waves. For any
such ray, the field oscillations (forced by the outside vac-
uum) may have maximum amplitude or a node at the cen-
ter: correspondingly, the stationary wave will have squared
amplitude cos2(kΩ̂ · r) or sin2(kΩ̂ · r) at the point of in-
terest.

As for the contribution of rays that support a mode
having an antinode at the cavity center, they have differ-
ent phases away from the origin according to their direc-
tion and thus contribute in the average with weight 1/2: the
former considerations on the positions of nodes of Bessel
functions are now reformulated as positions of nodes of
stationary waves along rays with different directions.

Spherical aberrations

As it can be seen in Figure 2, the simple ray-optics analysis
described above agrees approximately with the results of
the operator-based numerical computation in the vicinity
of the center, but fails to describe the vacuum fluctuations
away from that area.

Indeed, in order to handle field properties at a point
located at a distance r form the origin, we shall not con-
sider anymore the effect of rays going through the origin,
but rather that of rays going through this point: such rays
miss the origin by a distance d < r, and thus carry � < kr

orbital momentum in � units. These rays do not close af-
ter one round trip: if we do not move too far from the
origin, we may still assume that any point is imaged onto
its symmetric after one reflection, and so onto itself after
two reflections, but the (twice) reflected way is tilted by
an angle δθ = (4r/R) sin θ. However, as we are consider-
ing finesse values in the range 10–100, and r, R values re-
spectively smaller than 102 and 105λ, we may reasonably
neglect this tilt and and associate to any ray an average
value θ. Note that θ corresponds to � via � = kr sin θ.
Since � is conserved at reflection on the mirror, due to the
symmetry with respect to a radius, the change in the di-
rection of the light ray is actually accompanied by a lack
of re-imaging of the point back to itself. So, our assump-
tion really consists in neglecting both the tilt and the lack
of re-imaging, and correspondingly in keeping the spatial
modulation cos2 kr and sin2 kr in the expressions given
above.

What cannot be neglected, however, is the relative
phase with which the reflected light comes back to the ini-
tial point: for off-center rays, a round trip involves propa-
gation on a distance 4R + (2r2/R) sin2 θ. Consequently,
the frequency-dependent factor acquire an extra phase
term and becomes 2ikR + (ikr2/R) sin2 θ. As it can be
seen in Figure 3, this phase term is basically responsible
for the decrease of the spectral density as a function of
the distance.

Boundary effects and diffraction losses

The formulation in terms of light rays described above can
be straightforwardly extended from a closed to an open
cavity: to any ray we associate an enhancement factor,
which is frequency-dependent if the ray meets the mir-
ror, and is unity if the ray misses the mirror, as well as
a spatially-dependent term describing the intensity mod-
ulation of the stationary waves.

When the two mirrors are identical, we use the re-
sults known for symmetrical Fabry-Perot resonators and
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Fig. 3. Same as Figure 2, now including spherical aberrations, so that the spectral density is now decreasing as a function of
the distance. The result of the full calculation (Fig. 1) is shown for comparison.

Fig. 4. Same as Figure 2, now including both spherical aberrations and diffraction losses. The result is now in very good
agreement with the full calculation (Fig. 1), which is also shown for comparison.

obtain:
〈
|φ(r)|2

〉

cav〈
|φ(r)|2

〉

vac

=

∫
dΩ̂
4π




T

∣∣∣1 − ρe2ikRei kr2
R sin2 θ

∣∣∣
2 cos2(kΩ̂ · r)

+
T

∣∣∣1 + ρe2ikRei kr2
R sin2 θ

∣∣∣
2 sin2(kΩ̂ · r)



 . (66)

Should the two mirrors be different, the formula would be
easily modified, just as in the case of a usual Fabry-Perot
resonator (see Appendix A). In particular, the maximal
enhancement at the center of a symmetrical cavity sub-
tending a total solid angle Ωm is:

〈
|φ(0)|2

〉

cav〈
|φ(0)|2

〉

vac

=
Ωvac

4π
+

T

|1 − ρ|2
Ωm

4π
. (67)

It is worth noting that the ray-formula without spherical
aberrations given above corresponds exactly to the result
of the more rigourous analysis, when one neglects ∆S , i.e.,
if one takes ei∆S/kR equal to unity. Though the main effect
of ∆S is accounted for by spherical aberrations, a small

discrepancy remains: for ρm = 0.98 and Ωm/4π = 0.3, the
numerical computation in the basis of spherical harmonics
yields an enhancement factor of 29.2 at the cavity center
and at resonance, while the ray computation gives 30.4 in
the same conditions. We shall explain this small difference
by diffraction losses: those rays that would be reflected
near the edge of the mirror are actually lost due to diffrac-
tion and fail to do as many round-trips as the other rays.
This second effect of ∆S can be estimated by looking for
an approximate inverse of the operator (ei

∆S
kR −ρ(θ)), valid

near the mirror edge. The result of this procedure is that
one can still use the previous formula for any detuning
and at any point, provided that the boundary value θm

is decreased to θeff = θm − δθ, with δθ = 1/
√

kRT

for symmetrical mirrors, and δθ = 1/
√

kR(1 − ρ2
av) for

non-symmetrical mirrors, ρav being the average reflectiv-
ity (ρ1+ρ2)/2 of the two mirrors. Applying this procedure
to the above example, we shall substract

1√
kRT

sin(θm)

(
T

|1 − ρ|2
− 1

)
= 1.2, (68)

which is quite satisfactory since 30.4 − 1.2 = 29.2.
The comparison of the ray calculation and of the com-

plete one for an open cavity is shown in Figure 4, with
the same parameters as for Figure 1. As it can be seen,
the agreement is very good, and justifies a posteriori the
assumptions which have been made. It can therefore be
concluded that the main correction to the naive calcu-
lation is the phase error due to spherical aberrations,



190 The European Physical Journal D

with some small correction from the edge diffraction
losses. These corrections are enough to get the right an-
swer in the conditions that we are considering (R ∼ 105λ−,
r smaller than 100λ−).

Focusing defects

The numerical scheme of the previous sections allows us
to systematically study the effects of mechanical defects
in the cavity, e.g. defocusing, or non perfectly spheri-
cal mirrors. For instance, one can reproduce an axial
mispositioning of the mirrors by a length δ, by adding
an imaginary part to the mirror reflectivity: ρ(θ) =
ρ0e

2ik
√

R2+δ2+2Rδ cos θ−R = ρ0e
2ikδ cos θ. The first effect

of such a mispositioning is to shift the resonance fre-
quency. Correcting for this shift, the second effect is to
decrease the enhancement effect, which is typically halved
for δ = 40 nm (kδ = 0.3) with the previous param-
eters. Here again, it can be seen that the ray formula
gives the right answer. As it was discussed above for posi-
tions outside the cavity center, the main feature is indeed
the phase shift after one reflection, which is correctly de-
scribed by the modified value of ρ(θ), while the tilting and
non-imaging effect can be neglected.

2.3 Polarization effects

The above considerations, which were done for a scalar
field, can be straightforwardly extended to the case of a
vector field, which is needed to describe polarization ef-
fects. Here we will skip the explicit operatorial formulas,
and give only the results obtained in the ray optics ap-
proximation. As previously, this approximate solution was
checked by comparison with the complete numerical cal-
culation, and found to be in complete agreement with it.
For a transverse vector field φ(r) and for two polarization
directions ε1 and ε2, the results obtained in the scalar case
(Eq. (66)) are then changed into:

〈(ε1 · φ(r))∗ × (ε2 · φ(r))〉
cav

〈(ε1 · φ(r))∗ × (ε1 · φ(r))〉
vac

=

∫
dΩ̂
4π

3
2

(
ε1 · ε2 − (Ω̂ · ε1)(Ω̂ · ε2)

)

×
(

T

|1 − ρe2iφ|2
cos2(kΩ̂ · r)

+
T

|1 + ρe2iφ|2
sin2(kΩ̂ · r)

)
. (69)

From this equation, the cavity induced damping and level
shifts can be obtained using equations (1) and (2) by in-
tegration over the frequency, which is straightforward for
the damping, and requires contour integration for the level
shifts (see Appendix B). Finally, the effect of the cavity
can be described to a very good approximation by the

following formulas:

Γ (r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
(

T

|1−ρe2iφ|2
cos2(kΩ̂ · r ) +

T

|1+ρe2iφ|2
sin2(kΩ̂ · r)

)

(70)

∆′(r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
(

ρ sin(2φ)

|1−ρe2iφ|2
cos2(kΩ̂ · r) − ρ sin(2φ)

|1+ρe2iφ|2
sin2(kΩ̂ · r)

)

(71)

where the notation Ω̂ describes a direction in space,
while φ is a cavity detuning parameter that will be detailed
below. As previously, these expressions have a straight-
forward interpretation, because they appear basically as
integrals over the direction of light rays: in the integral
over the directions, ρ is the mirror reflectivity for rays
subtended by the cavity, and is zero for rays outside the
cavity solid angle. The different factors appearing in the
integrals are detailed below.

The first factor under the integral corresponds to po-
larisation effects, taking into account the transverse char-
acter of the field.

The second (resonance) factor is of the usual
Fabry-Perot form, where φ is the cavity phase shift which
includes first a term φ0 = ω0R/c. As it was shown be-
fore, in order to obtain a correct result outside the cavity
center, φ must include also a contribution from spherical
aberrations, that is: φ = φ0 + k(r2 − (Ω̂ · r)2)/2R. This
second term corresponds to the extra phase shift expe-
rienced by rays going through point r while propagating
along the Ω̂-direction. The resonance factor has obviously
different expressions for the damping and the lamb shift
terms, which correspond respectively to the active and re-
active parts of the coupling. This is clearly apparent from
the integrals of equations (1) and (2), which involve ei-
ther a delta function or a principal part. In the first case,
the integration is trivial, and yields the resonance term of
equation (70), while in the second case the result is ob-
tained by contour integration, and gives the “dispersive”
second term of equation (71).

The third term under the integrals is the stationary
wave pattern corresponding either to odd modes (which
have an anti-node in the center and a cos2(kΩ̂ · r) space
dependence) or to even modes (which have a node in the
center and a sin2(kΩ̂ · r) space dependence).

Finally, the integration over the mirrors is conveniently
performed in spherical coordinates, by taking the z-axis
along the cavity axis, and varying the azimuthal an-
gle θ from 0 to θmirror = θm. Improved accuracy (better
than 1%) is obtained if one takes into account the fact
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Fig. 5. Normalized damping Γ (0)/Γvac (left) and level shift ∆′(0)/Γvac (right) at the cavity center, as a function of the atom-
cavity detuning normalized to the cavity linewidth. The amplitude reflection coefficient of the mirrors is taken to be ρ = 0.98,
and the numerical aperture of the cavity is 0.7. The upper curves correspond to a dipole oriented perpendicular to the cavity
axis, and the lower curves to a dipole oriented along the cavity axis.

that the rays which would be reflected near the edge of
the mirror are actually lost due to diffraction and fail to
do as many round-trips as the other ones. As before, this
effect can be taken into account very simply by decreasing
θm to θeff = θm − δθ, with δθ = 1/

√
kRT for symmetrical

mirrors.
The first results which can be obtained from the pre-

vious formulas are obviously the shift and damping at the
cavity center, as a function of the atom-cavity detuning.
For a dipole orientation parallel to the cavity axis, we ob-
tain straightforwardly:

Γpar(0)
Γvac

=
∆Ωvac

4π

(
1 +

sin2 θm

2

)

+
∆Ωcav

4π

(
1 − cos θm (1 + cos θm)

2

)
T

|1 − ρe2iφ0 |2
(72)

∆′
par(0)
Γvac

=

∆Ωcav

4π

(
1 − cos θm (1 + cos θm)

2

)
ρ sin(2φ0)

|1 − ρe2iφ0 |2
(73)

while for a dipole orientation perpendicular to the cavity
axis, we have:

Γperp(0)
Γvac

=
∆Ωvac

4π

(
1 − sin2 θm

4

)

+
∆Ωcav

4π

(
1 +

cos θm (1 + cos θm)
4

)
T

|1 − ρe2iφ0 |2
(74)

∆′
perp(0)
Γvac

=

∆Ωcav

4π

(
1 +

cos θm (1 + cos θm)
4

)
ρ sin(2φ0)

|1 − ρe2iφ0 |2
. (75)

We note that these expressions yield for a randomly ori-
ented dipole:

Γav(0)
Γvac

=
∆Ωvac

4π
+

∆Ωcav

4π

T

|1 − ρe2iφ0 |2
,

∆′(0)
Γvac

=
∆Ωcav

4π

ρ sin(2φ0)

|1 − ρe2iφ0 |2
(76)

corresponding to the scalar case already given above. We
note that these results are the same as those given in refer-
ence [7], up to factor two resulting from the fact that this
reference was considering spatially averaged values rather
than the peak value at the cavity center (see below for the
space dependence). These functions are plotted in Figure 5
for Ωcav/4π = 0.3 and ρ = 0.98. It can be seen that very
significant effects occur for these quite reasonable param-
eters, yielding more than 30-fold increase in the damping
rate at the cavity center.

The above formulas also give the damping and level
shifts as a function of space for a given frequency, which
are an important result of the present paper. The re-
sults in the most general case where the two mirrors have
different reflectivities are given in Appendix C. Two atom-
cavity detunings are specially worth looking at: the res-
onant frequency at the cavity center, which yields max-
imum change in the damping rate but no cavity shift,
and frequencies detuned by plus or minus half a cavity
linewidth, which yield maximum cavity shifts. These re-
sults will be exploited in the following paper [13], which
deals with vacuum-induced light forces acting on an atom
close to the cavity center.

3 Conclusion

As a conclusion, we have calculated explicitly the cavity
induced damping and level shifts for an atomic dipole close
to the center of a spherical cavity. Our results are valid
for arbitrary (large) aperture and (not too large) mirrors
reflectivities (for the most general case see Appendix C).
These results show that macroscopic cavities with large
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M =
2 (τ2

1 + τ2
2 ) (cos2(φ) cos2(kΩ̂ · r) + sin2(φ) sin2(kΩ̂ · r)) + (τ2

1 − τ2
2 ) sin(2 φ) sin(2 kΩ̂ · r)

(e4 i φ − 1 + (τ2
1 + τ2

2 )/2) (e−4 i φ − 1 + (τ2
1 + τ2

2 )/2)
(81)

numerical apertures are interesting candidates for cavity
QED experiments in the optical domain. In particular,
we show in a joint paper [13] that the cavity-induced level
shifts are responsible for a “vacuum-field” force on at atom
moving close to the cavity center [14,15]. An explicit ex-
pression of the trapping potential can be obtained from
the results given above.

Appendix A

When the mirrors’transmission are different, equation (66)
can be generalized to:

〈
|φ(r)|2

〉

cav〈
|φ(r)|2

〉

vac

=

∫
dΩ̂
4π

M



r, φ = kR +
k
(
r2 − (Ω̂ · r)2

)

2R



 (77)

where r = | r |, and:

M =
τ1

2
(
1 + ρ2

2 + 2 ρ2 cos
(
2 (φ − kΩ̂ · r)

))

2 (1 − e−4 i φ ρ1 ρ2) (1 − e4 i φ ρ1 ρ2)

+
τ2

2
(
1 + ρ1

2 + 2 ρ1 cos
(
2 (φ + kΩ̂ · r)

))

2 (1 − e−4 i φ ρ1 ρ2) (1 − e4 i φ ρ1 ρ2)
(78)

where for each mirror τ2
i + ρ2

i = 1. This equation can also
be written in the less compact but more transparent form:

M =
(1 − ρ1ρ2) (1 + ρ1ρ2 + (ρ1 + ρ2) cos(2φ))

(1 − e−4iφρ1ρ2) (1 − e4iφρ1ρ2)
cos2(kΩ̂ · r)

+
(1−ρ1ρ2) (1 + ρ1ρ2 − (ρ1 + ρ2) cos(2φ))

(1 − e−4iφρ1ρ2) (1 − e4iφρ1ρ2)
sin2(kΩ̂ · r)

+
(1 + ρ1ρ2) (ρ2 − ρ1) sin(2φ)

(1 − e−4iφρ1ρ2) (1 − e4iφρ1ρ2)
sin(2kΩ̂ · r) (79)

which has the same interpretation as equation (66): the
sin2(kΩ̂·r) and cos2(kΩ̂·r) correspond to the contributions
of the in-phase and out-of-phase standing waves along the
direction Ω̂, while sin(2kΩ̂·r) = 2 sin(kΩ̂·r) cos(kΩ̂·r) is
an interference term due to the intensity inbalance be-
tween the forward and backward contributions.

In the case of a high finesse cavity (τ1, τ2 � 1), these
equations can be rewritten:

M =

2
(
τ2
1 cos2(φ − kΩ̂ · r) + τ2

2 cos2(φ + kΩ̂ · r)
)

(e4iφ − 1 + (τ2
1 + τ2

2 ) /2) (e−4iφ − 1 + (τ2
1 + τ2

2 ) /2)
(80)

or alternatively:

see equation (81) above.

For a symmetrical high-finesse cavity with τ1 = τ2 = τ ,
one obtains finally:

M =
4τ2(cos2(φ) cos2(kΩ̂ · r) + sin2(φ) sin2(kΩ̂ · r))

(e4iφ − 1 + τ2)(e−4iφ − 1 + τ2)
(82)

which can also be obtained directly from equation (66).

Appendix B

Let us consider the normalized Airy function:

L(φ) =
√

1 + F

1 + F sin2 φ
=

1 − ρ2

|1 − ρe2iφ|2
(83)

where F is related to the mirrors amplitude reflectivity by
F = 4ρ/(1 − ρ)2. In order to calculate the level shift, we
need to evaluate the principal part integral:

∆(φ) =
∫

P dδ

δ
L(φ − δ). (84)

Replacing L(φ− δ) by its uneven part 1
2 (L(φ− δ)−L(φ+

δ)), ∆(φ) can be expressed as a standard integral:

∆(φ) =

1
2

∫
dδ

δ

( √
1 + F

1 + F sin2(δ − φ)
−

√
1 + F

1 + F sin2(δ + φ)

)
. (85)

This quantity can be evaluated by contour integration,
using the zeros of the denominators 1+F sin2(δ±φ), which
are respectively δ−n = −φ± iβ +nπ, and δ+

n = φ± iβ +nπ,
where β > 0 and sinh2 β = 1/F . Using a contour in the
lower part of the complex plane, which includes the poles
δ±n = ±φ − iβ + nπ with n = ...− 1, 0, 1, ..., we obtain for
instance:
∫

dδ

δ

1
1 + F sin2(δ − φ)

=
−2iπ

F sin(−2iβ)
Σn

1
φ − iβ + nπ

=
2π

F sinh(2β)
1

tan(φ − iβ)
. (86)
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Using sinh(2β) = 2
√

1 + F and tan(φ − iβ) =√
1+F sin φ−i cos φ√
1+F cos φ+i sin φ

, we obtain thus:

∆(φ) =
π

2

(
1

tan(φ − iβ)
− 1

tan(−φ − iβ)

)

=
πF

2

(
sin(2φ)

1 + F sin2 φ

)
. (87)

Coming back to mirrors reflectivities, we obtain finally the
expression used in equation (71):

∆(φ) = 2π
ρ sin(2φ)

|1 − ρe2iφ|2
. (88)

Appendix C

In the case of asymmetrical mirrors with amplitude trans-
mitivities ρ1 and ρ2, one can use the formulas of Ap-
pendix B, changing F into F ′ = 4ρ1ρ2/(1− ρ1ρ2)2, and φ
into φ′ = 2φ, so that:

∆ (φ′) =
π F ′

2

(
sin(2φ′)

1 + F ′ sin2 φ′

)
. (89)

In addition, we need to evaluate the principal parts for
L(φ − δ) multiplied either by cos(φ − δ) or sin(φ − δ).
Taking for instance the cosine part, we obtain:

∆c(φ) =
∫

P dδ

δ
L(φ − δ) cos(φ − δ). (90)

This can be done as before, and we have:

∫
dδ

δ

cos(δ − φ)
1 + F sin2(δ − φ)

=
−2iπ

F sin(−2iβ)
Σn

cos(−iβ + nπ)
φ − iβ + nπ

=
2π cosh(β)
F sinh(2β)

1
sin(φ − iβ)

. (91)

Using sin(φ − iβ) = (
√

1 + F sinφ − i cosφ)/
√

F we get:

∆c(φ) =
π
√

F (1 + F )
2F

(
1

sin(φ − iβ)
− 1

sin(−φ − iβ)

)

= π (1 + F )
sin φ

1 + F sin2 φ
. (92)

Applying the same method for the sine part, we obtain
finally:

∆c (φ′) = π (1 + F ′)
sin φ′

1 + F ′ sin2 φ′

∆s (φ′) = −π
cosφ′

1 + F ′ sin2 φ′ . (93)

From these formulas, we obtain the damping and level
shift in the asymmetrical case:

Γ (r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
{

(1−ρ1ρ2) (1+ρ1ρ2+(ρ1 + ρ2) cos(2φ))
(1−e−4iφρ1ρ2) (1−e4iφρ1ρ2)

cos2(kΩ̂ · r)

+
(1−ρ1ρ2) (1+ρ1ρ2−(ρ1+ρ2) cos(2φ))

(1−e−4iφρ1ρ2) (1−e4iφρ1ρ2)
sin2(kΩ̂ · r)

+
(1 + ρ1ρ2) (ρ2 − ρ1) sin(2φ)

(1 − e−4iφρ1ρ2) (1 − e4iφρ1ρ2)
sin(2kΩ̂ · r)

}
(94)

∆′(r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
{

ρ1ρ2 sin(4φ)+(ρ1+ρ2) (1+ρ1ρ2) sin(2φ)/2
(1−e−4iφρ1ρ2) (1−e4iφρ1ρ2)

cos2(kΩ̂ · r)

+
ρ1ρ2 sin(4φ)−(ρ1+ρ2) (1+ρ1ρ2) sin(2φ)/2

(1−e−4iφρ1ρ2) (1−e4iφρ1ρ2)
sin2(kΩ̂ · r)

+
(1−ρ1ρ2) (ρ1−ρ2) cos(2φ)/2
(1−e−4iφρ1ρ2) (1−e4iφρ1ρ2)

sin(2kΩ̂ · r)
}

. (95)

An particularly interesting case is a one-mirror cavity
(ρ1 = ρ, ρ2 = 0), for which

Γ (r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
{

1 + ρ cos
(
2(kΩ̂ · r + φ)

)}
(96)

∆′(r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
{ρ

2
sin

(
2(kΩ̂ · r + φ)

)}
. (97)

Neglecting spherical aberrations, one has as before φ =
ω0R/c, while r corresponds to the atom’s position with
respect to the mirror’s center of curvature. We note that
these equations have the correct behaviour Γ (r) = Γvac

and ∆′(r) = 0 if ρ = 0 (no cavity). In the case of a small
solid angle ε = Ω/(4π) subtended by the spherical mirror
and a dipole orthogonal to the “cavity” axis Oz, one gets:

Γ (z)
Γvac

Ê ≈ 1 +
3ερ

2
cos (2 (kz + φ)) ,

∆′(z)
Γvac

≈ 3ερ

4
sin (2 (kz + φ)) . (98)

From equation (78), the total phase (kz+φ) corresponds to
the distance l between the atom and mirror 1. Taking into
account that kz + φ = 0, or equivalently kl = π/2 mod π,
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are antinodes of the standing wave, one has more precisely
kl = kz + φ + π/2. Equation (98) corresponds then to the
results obtained in reference [16], up to a factor 3/2 due
to the fact that the vectorial character of the dipole was
ignored in reference [16]. More accurate results for any
position of the atom and solid angle subtended by the
mirror can be obtained from equations (96) and (97).
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